Copied to
clipboard

G = C4230D4order 128 = 27

24th semidirect product of C42 and D4 acting via D4/C2=C22

p-group, metabelian, nilpotent (class 2), monomial

Aliases: C4230D4, C24.373C23, C23.536C24, C22.3122+ 1+4, C22.2292- 1+4, C428C453C2, C23.68(C4○D4), C232D4.18C2, C23.4Q832C2, C23.Q840C2, C23.8Q887C2, C23.10D462C2, C23.23D472C2, (C2×C42).613C22, (C23×C4).139C22, (C22×C4).146C23, C22.361(C22×D4), (C22×D4).544C22, C23.83C2362C2, C2.87(C22.19C24), C2.44(C22.29C24), C2.42(C22.32C24), C2.C42.261C22, C2.41(C22.33C24), C2.29(C22.31C24), (C2×C4×D4)⋊55C2, (C2×C4).395(C2×D4), (C2×C422C2)⋊15C2, (C2×C4⋊C4).893C22, C22.408(C2×C4○D4), (C2×C22⋊C4).224C22, SmallGroup(128,1368)

Series: Derived Chief Lower central Upper central Jennings

C1C23 — C4230D4
C1C2C22C23C22×C4C2×C22⋊C4C23.23D4 — C4230D4
C1C23 — C4230D4
C1C23 — C4230D4
C1C23 — C4230D4

Generators and relations for C4230D4
 G = < a,b,c,d | a4=b4=c4=d2=1, ab=ba, cac-1=ab2, dad=a-1, cbc-1=a2b, bd=db, dcd=c-1 >

Subgroups: 596 in 281 conjugacy classes, 96 normal (34 characteristic)
C1, C2, C2, C2, C4, C22, C22, C22, C2×C4, C2×C4, D4, C23, C23, C23, C42, C22⋊C4, C4⋊C4, C22×C4, C22×C4, C22×C4, C2×D4, C24, C24, C2.C42, C2.C42, C2×C42, C2×C22⋊C4, C2×C22⋊C4, C2×C4⋊C4, C2×C4⋊C4, C4×D4, C422C2, C23×C4, C22×D4, C22×D4, C428C4, C23.8Q8, C23.23D4, C232D4, C23.10D4, C23.10D4, C23.Q8, C23.4Q8, C23.83C23, C2×C4×D4, C2×C422C2, C4230D4
Quotients: C1, C2, C22, D4, C23, C2×D4, C4○D4, C24, C22×D4, C2×C4○D4, 2+ 1+4, 2- 1+4, C22.19C24, C22.29C24, C22.31C24, C22.32C24, C22.33C24, C4230D4

Smallest permutation representation of C4230D4
On 64 points
Generators in S64
(1 2 3 4)(5 6 7 8)(9 10 11 12)(13 14 15 16)(17 18 19 20)(21 22 23 24)(25 26 27 28)(29 30 31 32)(33 34 35 36)(37 38 39 40)(41 42 43 44)(45 46 47 48)(49 50 51 52)(53 54 55 56)(57 58 59 60)(61 62 63 64)
(1 15 28 47)(2 16 25 48)(3 13 26 45)(4 14 27 46)(5 50 38 18)(6 51 39 19)(7 52 40 20)(8 49 37 17)(9 59 41 30)(10 60 42 31)(11 57 43 32)(12 58 44 29)(21 33 53 63)(22 34 54 64)(23 35 55 61)(24 36 56 62)
(1 51 43 61)(2 20 44 36)(3 49 41 63)(4 18 42 34)(5 29 54 16)(6 59 55 45)(7 31 56 14)(8 57 53 47)(9 33 26 17)(10 64 27 50)(11 35 28 19)(12 62 25 52)(13 39 30 23)(15 37 32 21)(22 48 38 58)(24 46 40 60)
(1 61)(2 64)(3 63)(4 62)(5 58)(6 57)(7 60)(8 59)(9 17)(10 20)(11 19)(12 18)(13 21)(14 24)(15 23)(16 22)(25 34)(26 33)(27 36)(28 35)(29 38)(30 37)(31 40)(32 39)(41 49)(42 52)(43 51)(44 50)(45 53)(46 56)(47 55)(48 54)

G:=sub<Sym(64)| (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32)(33,34,35,36)(37,38,39,40)(41,42,43,44)(45,46,47,48)(49,50,51,52)(53,54,55,56)(57,58,59,60)(61,62,63,64), (1,15,28,47)(2,16,25,48)(3,13,26,45)(4,14,27,46)(5,50,38,18)(6,51,39,19)(7,52,40,20)(8,49,37,17)(9,59,41,30)(10,60,42,31)(11,57,43,32)(12,58,44,29)(21,33,53,63)(22,34,54,64)(23,35,55,61)(24,36,56,62), (1,51,43,61)(2,20,44,36)(3,49,41,63)(4,18,42,34)(5,29,54,16)(6,59,55,45)(7,31,56,14)(8,57,53,47)(9,33,26,17)(10,64,27,50)(11,35,28,19)(12,62,25,52)(13,39,30,23)(15,37,32,21)(22,48,38,58)(24,46,40,60), (1,61)(2,64)(3,63)(4,62)(5,58)(6,57)(7,60)(8,59)(9,17)(10,20)(11,19)(12,18)(13,21)(14,24)(15,23)(16,22)(25,34)(26,33)(27,36)(28,35)(29,38)(30,37)(31,40)(32,39)(41,49)(42,52)(43,51)(44,50)(45,53)(46,56)(47,55)(48,54)>;

G:=Group( (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32)(33,34,35,36)(37,38,39,40)(41,42,43,44)(45,46,47,48)(49,50,51,52)(53,54,55,56)(57,58,59,60)(61,62,63,64), (1,15,28,47)(2,16,25,48)(3,13,26,45)(4,14,27,46)(5,50,38,18)(6,51,39,19)(7,52,40,20)(8,49,37,17)(9,59,41,30)(10,60,42,31)(11,57,43,32)(12,58,44,29)(21,33,53,63)(22,34,54,64)(23,35,55,61)(24,36,56,62), (1,51,43,61)(2,20,44,36)(3,49,41,63)(4,18,42,34)(5,29,54,16)(6,59,55,45)(7,31,56,14)(8,57,53,47)(9,33,26,17)(10,64,27,50)(11,35,28,19)(12,62,25,52)(13,39,30,23)(15,37,32,21)(22,48,38,58)(24,46,40,60), (1,61)(2,64)(3,63)(4,62)(5,58)(6,57)(7,60)(8,59)(9,17)(10,20)(11,19)(12,18)(13,21)(14,24)(15,23)(16,22)(25,34)(26,33)(27,36)(28,35)(29,38)(30,37)(31,40)(32,39)(41,49)(42,52)(43,51)(44,50)(45,53)(46,56)(47,55)(48,54) );

G=PermutationGroup([[(1,2,3,4),(5,6,7,8),(9,10,11,12),(13,14,15,16),(17,18,19,20),(21,22,23,24),(25,26,27,28),(29,30,31,32),(33,34,35,36),(37,38,39,40),(41,42,43,44),(45,46,47,48),(49,50,51,52),(53,54,55,56),(57,58,59,60),(61,62,63,64)], [(1,15,28,47),(2,16,25,48),(3,13,26,45),(4,14,27,46),(5,50,38,18),(6,51,39,19),(7,52,40,20),(8,49,37,17),(9,59,41,30),(10,60,42,31),(11,57,43,32),(12,58,44,29),(21,33,53,63),(22,34,54,64),(23,35,55,61),(24,36,56,62)], [(1,51,43,61),(2,20,44,36),(3,49,41,63),(4,18,42,34),(5,29,54,16),(6,59,55,45),(7,31,56,14),(8,57,53,47),(9,33,26,17),(10,64,27,50),(11,35,28,19),(12,62,25,52),(13,39,30,23),(15,37,32,21),(22,48,38,58),(24,46,40,60)], [(1,61),(2,64),(3,63),(4,62),(5,58),(6,57),(7,60),(8,59),(9,17),(10,20),(11,19),(12,18),(13,21),(14,24),(15,23),(16,22),(25,34),(26,33),(27,36),(28,35),(29,38),(30,37),(31,40),(32,39),(41,49),(42,52),(43,51),(44,50),(45,53),(46,56),(47,55),(48,54)]])

32 conjugacy classes

class 1 2A···2G2H2I2J2K2L4A4B4C4D4E···4L4M···4S
order12···22222244444···44···4
size11···14444822224···48···8

32 irreducible representations

dim111111111112244
type+++++++++++++-
imageC1C2C2C2C2C2C2C2C2C2C2D4C4○D42+ 1+42- 1+4
kernelC4230D4C428C4C23.8Q8C23.23D4C232D4C23.10D4C23.Q8C23.4Q8C23.83C23C2×C4×D4C2×C422C2C42C23C22C22
# reps112213211114831

Matrix representation of C4230D4 in GL8(𝔽5)

42000000
01000000
00400000
00040000
00004020
00000014
00004010
00004110
,
30000000
03000000
00100000
00010000
00004200
00000100
00000104
00000140
,
40000000
41000000
00010000
00400000
00001300
00001400
00000401
00001440
,
40000000
04000000
00010000
00100000
00001300
00000400
00001404
00001440

G:=sub<GL(8,GF(5))| [4,0,0,0,0,0,0,0,2,1,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,4,0,4,4,0,0,0,0,0,0,0,1,0,0,0,0,2,1,1,1,0,0,0,0,0,4,0,0],[3,0,0,0,0,0,0,0,0,3,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,2,1,1,1,0,0,0,0,0,0,0,4,0,0,0,0,0,0,4,0],[4,4,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,1,1,0,1,0,0,0,0,3,4,4,4,0,0,0,0,0,0,0,4,0,0,0,0,0,0,1,0],[4,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,1,0,1,1,0,0,0,0,3,4,4,4,0,0,0,0,0,0,0,4,0,0,0,0,0,0,4,0] >;

C4230D4 in GAP, Magma, Sage, TeX

C_4^2\rtimes_{30}D_4
% in TeX

G:=Group("C4^2:30D4");
// GroupNames label

G:=SmallGroup(128,1368);
// by ID

G=gap.SmallGroup(128,1368);
# by ID

G:=PCGroup([7,-2,2,2,2,-2,2,2,112,253,758,723,185,192]);
// Polycyclic

G:=Group<a,b,c,d|a^4=b^4=c^4=d^2=1,a*b=b*a,c*a*c^-1=a*b^2,d*a*d=a^-1,c*b*c^-1=a^2*b,b*d=d*b,d*c*d=c^-1>;
// generators/relations

׿
×
𝔽